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ABSTRACT

Background: The exponential increase in medical information in contemporary science 
warrants the use of computational tools to simplify and ameliorate patient care. Multiple 
linear regression modelling is a statistical method that has wide applications in analysis 
and interpretation of clinical data.  In this article, we describe the method of  developing a 
multiple linear regression model using simulation of computer generated data.

Methods: Data was generated for a sample size of 40, for one dependent variable (Y) and four 
independent variables (X1, X2, X3 and X4). In the first step, bivariate correlation was used 
to find the individual strength of correlation (R) between the dependent and independent 
variables. In the second step, the significant variables were added in the model in order 
of decreasing value of R. Variables which remained statistically significant (p<0.1) in the 
model were retained while insignificant and multicollinear variables were removed. The 
final best fit model was conceived with the significant predictors.

Results: The R value for variables X1 to X4 was 0.933, 0.911, 0.725 and 0.148 respectively. 
X1, X2 and X3 were statistically significant (p<0.001) while X4 was non-significant 
(p=0.36). X2 and X4 were not included in the best fit model because of multicollinearity and 
statistical non-significance respectively. The best fit model was represented by the equation 
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Introduction:
In research work, a mathematical method 
known as simple linear regression is of 
great utility when a strong correlation 
exists between a dependent variable and a 
single independent variable. This allows the 
researcher to accurately predict the value of 
the response variable with the independent 
variable when the value of the former is 
not available.However, in the world of 
biological science, heterogeneity of data is 
the rule rather than exception. This reflects 
asgaps in explanation of a clinical entity 
when attempts are made to explain the 
same with a single variable.1 This warrants 
the collating of multiple independent 
variables into a single statistical model to 
predict or explain the dependent variable. 
Such a method known as multiple linear 
regression is a very useful tool in medicine 
to perform a variety of functions ranging 
from assessment of risk factors to arriving 
at a diagnosis.2 The method begins with 
identification of the significant predictors 
by separately assessing the strength of 
correlation between the predictors and the 
dependent variable. In the second step, the 
significant correlates are tested for inclusion 
in a collective model using proper statistical 
techniques. The model is deemed “best fit” 
when it explains the maximum proportion 
of the variability for the dependent variable 
with the minimum statistical error. In this 
article, we describe a step by step procedure 
to construct a multiple linear regression 
model using computer generated data for 
multiple variables.

Methods:
Generation of Data

A set (n=40) of data was generated for 
five variables(Y, X1, X2, X3 and X4) 
in Microsoft Excel using the function 
I=RANDBETWEEN(A,B) where I is a 
random integer between A and B (Table 
1). The set of 40 values for the variables Y, 
X1 and X2 was generated in 4 incremental 
blocks with random integers ranging 
between 1-10, 11-20, 21-30 and 31-40 for 
the first, second, third and fourth block 
respectively. Similarly, the data for the 
variable X3 was generated in 2 blocks 
ranging between 1-20 and 21-40 for the 
first and second block respectively, and the 
data for X4 was generated in a single block 
ranging between 1-40. 

Correlation Statistics

The dependent variable was Y and the 
independent variables were X1, X2, X3 and 
X4. Bivariate correlation was employed 
to test the strength of correlation between 
the dependent and independent variables. 
The strength of correlation was obtained 
separately for each of the independent 
variables.The strength of correlation 
was assessed using Pearson’s correlation 
coefficient (r). A p value of <0.05 was deemed 
statistically significant.

Simulation of Multiple Linear Regression 
Model

All simulation work was done in SPSS 
version 22.0. The construction of the model 
was initiated with a simple linear regression 

Y=0.692*X1+0.218*X3+2.003 where 0.692 and 0.218 were the unstandardized coefficients 
for X1 and X2 respectively and 2.003 was the constant.

Conclusion: Multiple linear regression modelling can be a useful tool for studying the 
simultaneous effect of multiple variables on a single dependent variable. 

Key words: mathematical modelling, multiple linear regression, simulation, statistical 
method
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Table 1: Computer generated data for the dependent (Y) and the independent variables 
(X1, X2, X3 and X4)

 
Sl. No. Y X1 X2 X3 X4
1 4 3 1 5 38
2 10 4 9 20 38
3 5 9 5 9 19
4 10 2 5 19 6
5 10 4 4 8 28
6 4 3 7 9 7
7 8 2 9 20 26
8 8 1 8 19 40
9 4 3 2 6 2
10 9 1 9 17 20
11 15 14 15 8 34
12 17 14 17 7 9
13 17 18 10 9 29
14 16 20 10 13 31
15 10 16 11 2 22
16 17 19 19 20 23
17 16 20 10 11 26
18 19 19 11 17 35
19 16 15 10 6 31
20 11 14 17 16 3
21 24 28 12 29 2
22 20 23 23 32 15
23 22 22 22 33 21
24 21 28 27 37 4
25 27 29 21 36 26
26 27 22 23 34 34
27 27 23 30 28 5
28 22 20 29 34 24
29 27 23 21 32 9
30 25 25 27 37 16
31 32 40 30 30 6
32 35 37 32 35 23
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Sl. No. Y X1 X2 X3 X4
33 40 35 33 31 26
34 32 34 40 26 12
35 33 40 40 25 8
36 35 30 38 25 12
37 33 35 39 26 15
38 38 35 37 23 19
39 34 39 40 30 17
40 35 36 37 26 31

Table 2: Stepwise simulation of multiple linear regression for construction of the best fit 
model.

Step Variables added P value R2 Adjusted R2 Inter-variable R Variable removed
01 X1 <0.001 0.871 0.868

02 X1

X2

<0.001

0.001

0.903 0.898 0.89 X2

03 X1

X3

<0.001

0.003

0.898 0.893 0.64

Figure 1: Scatter plot between the dependent variable (Y) and the independent variables 
(X1, X2, X3 and X4)
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model between the strongest predictor and 
the dependent variable. The other significant 
correlates were added sequentially into the 
model in decreasing order of the strength 
of correlation. The model was checked for 
increase in explained variability (Coefficient 
of determination, R2) and change in 
significance level of the independent variables 
at each step of addition of a new variable. 
The threshold probability below which the 
variable was retained in the model was set 
at 0.1. Multicollinearity was checked by 
inter-correlating the independent variables. 
A r valueof greater than 0.7 between the 
independent variables was set as the test 
limit of multicollinearity and the weaker 
correlate was droppedfrom the model.The 
model was checked for normality of data and 
homogeneity of variances using Kolmogorov-
Smirnov test. A p value greater than 0.05 
was deemed to be indicative of normality. 

In the end, the best fit model was 
constructed with the retained significant 
predictors.

Results:
The dependent variable Y was normally 
distributed. The r value for bivariate 
correlation between Y and X1, X2, X3 and 
X4 was 0.933, 0.911, 0.725 and -0.148 
respectively (Figure 1). While the strength of 
correlation for X1, X2 and X3 was statistically 
significant (p<0.001), it was statistically 
non-significant for X4 (p=0.36). The most 
significant correlate was X1 (R=0.933 and 
0.911 for X1 and X2 respectively). The 
construction of multiple linear regression 
models began with a simple linear regression 
model between Y and X1. The simple linear 
equation for X1 was Y = 0.812*X1+4.226. 
X1, X2 and X3 were added sequentially to 
the model in order of strength of correlation. 
X4 was not added in the model as it was 
not a significant correlate. The change in 
adjusted R2 and the significance level after 
each addition is shown in Table 2. X2 was 

found to be a multi-collinear variable (r 
with X1=0.89) and dropped from the model. 
The residuals were seen to obey the normal 
distribution pattern of data.The best fit 
model was developed with the significant 
correlates after the entry and elimination 
steps and was represented  with the equation 
Y=0.692*X1+0.218*X3+2.003 where 
0.692 and 0.218 were the unstandardized 
coefficients for X1 and X2 respectively and 
2.003 was the constant. The proportional of 
explained variability by the best fit model 
was 89.8 %.

Discussion:
The Prelude

The history of medicine dates back to time 
immemorial. The birth of the science took 
place the very day the prehistoric man 
nurtured the zeal to care, soothe and alleviate 
the pain of a fellow human being suffering 
from disease or infirmity. Since then,medical 
science has witnessed the transition from a 
primitive intuitive science to the present 
day modern medicine where diagnosis and 
treatment of disease is evidence based.3 
However, the realms of variability in 
human traits and environmental exposure 
poses a serious challenge to diagnostic 
accuracy and therapeutic homogeneity.4 
Traditionally, both diagnosis and response 
to therapydepends on a set of clinical, 
laboratory and genetic determinantswhere 
we see a convergence of multiple factors 
when reaching a diagnosis and divergence 
of treatment efficacy after therapeutic 
initiation (Fig 2). The boom in medical 
knowledge in contemporary times has 
transformed patient care into an exhaustive 
and mindboggling data-driven task which 
requires collating of information from 
multiple sources.5 Heuristically, we envision 
an unavoidable need to empower ourselves 
with computational and statistical knowhow 
to acclimatise ourselves to the information 
era in the best interests of mankind. 
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The Method

In this article, we have described the statistical 
method of multiple linear regression 
modelling which is an indispensable tool in 
performing and solving an array of tasks in 
the field of medicine. The method has the 
potential to define and attain diagnostic and 
therapeutic objectives with a maximised 
non-redundant mathematical accuracy. An 
optimum number of independent variables 
are incorporated simultaneously into a 
predictive model to obtain the maximum 
proportion of explained variability for the 
outcome variable. The contribution of the 
individual predictors is pooled into a single 
common final effect.6 Though it is also 
possible to introduce categorical or ordinal 
variables into the model as predictors, for 
simplicity of understanding, we have used 
only continuous independent variables in 
the simulation.

The Model

In our model, the proportion of explained 
variability (PEV) for the dependent variable 
Y was 87.1% with the strongest correlate X1. 
The PEV increased to 89.8% when X3 was 
added to themodel. X2 was also a very strong 
correlate to the dependent variable but as 
per pre-set criteria for multicollinearity was 
not retained in the final best fit model. X4 

was not included in the model because it 
was not a statistically significant correlate 
as per the cut-off probability level. 

Multicollinearity Diagnostics

Multicollinearity is a collateral statistical 
load in multiple linear regression modelling 
due to high level of inter-correlation between 
the predictors that does not contribute 
significantly to the PEV of the model but 
increases the margin of error of the parameter 
estimates of the regression coefficients, 
thereby attenuating the external validity 
of the model. Detecting and eliminating 
multicollinearity is an important exercise in 
multiple linear regression and is achievable 
by multiple established statistical 
techniques. In our simulation work, we 
used a simple and easy way to detect and 
eliminate the multi-collinear variables.
Barring the most significant correlate with 
which the model was incepted, a predictor 
which has a Pearson’s correlation coefficient 
greater than a cut-off value (pre-set at 
0.7 in our model) with any of the other 
predictors was deemed a multicollinear 
variable and dropped from the model. The 
other popular techniques of diagnosing 
multicollinearity includesvariance inflation 
factor (VIF), tolerance, condition indexing, 
condition numbering, Farrar-Glauber test, 

Clinical Data 

Laboratory parameters 

Imaging Data 

DIAGNOSIS THERAPY 

Patient factors 

Genes 

Environment RESPONSE 

Figure 2: Flow diagram showing convergence of information leading to diagnosis and 
divergence of response to therapy after therapeutic initiation.
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variance decomposition proportion and 
others.7 Tolerance and VIF of a particular 
predictor for inclusion in a model depend on 
the PEV (Rp2) of the predictor (which is now 
the dependent variable) by the remaining 
predictors included in the model. The value 
of tolerance is calculated as 1- Rp2. VIF is 
the inverse of tolerance. The cut-off value 
for tolerance and VIF for a predictor to be 
included in the model is conventionally set 
at or above 0.2 and 5 respectively.7 The 
discussion of multicollinear diagnostics has 
a much bigger scope, which is judiciously 
kept outside the purview of this article.

Model Flexibility

The pre-specified values of multicollinearity 
between predictors, significance level and 
increase in PEV on feeding of predictor into 
model are non-stringent statistical criteria 
which are best judged by researchers to 
maximise the clinical utility of the model 
without violating the basic principles.The 
aim of the best fit model is to maximise 
the magnitude of PEV with  minimum 
redundancy and the least proportion of error 
so that the model subserves internal as well 
as external validity.

Simulation in Biological Research

Our work not only aims to describe multiple 
linear regression in a simple methodical 
way but also seeks to familiarise a basic 
health care researcher with the concept of 
simulation. Simulation before site work 
can predict the viability and feasibility of 
the proposed research work and can save 
a lot of time and money. Our work shows 
that simulation can be done with readily 
available tools like MS Excel and SPSS, even 
without the knowledge of coding in High 
Level Programming Languages. In a first of 
its kind study, Balakrishnan et al, simulated 
a model for standard quantification of drug 
consumption in paediatric population using 
computer generated data in Microsoft 
Excel. The favourable output of the 

simulation led the researchers to real world 
validation of the method in a pilot cohort. 
The pioneering research paved the way 
for development of a standard unit of drug 
consumption in paediatric population which 
ensures comparability and uniformity 
of drug consumption quantification 
across heterogenous paediatric samples.8 

Simulation has also been used in the arena 
of comparative cost-effective analysis. 
Kongnakorn et al, using public domain 
inputs for infection rate, resistance pattern, 
recovery rate, adverse event and cost of 
therapy simulated a comparative analysis 
between three different treatment armsin 
complicated abdominal infectionsmimicking 
a 5-year timeline of 5000 virtual patients. 
The premonitory results of the computer 
model not only guide intensivists in the 
choice of therapy butcan also be a source 
of immense utility for policy makers in 
resource allocation.9 The aforementioned 
two exampleson computer simulation, of the 
myriad available in literature are beckoning 
evidence of the existing usefulness and 
future potential of simulation in healthcare 
research.

Brief Literature Review

Multiple linear regression is not new in 
medical research. Ahmed et al, developed 
a multiple linear regression model for 
prediction of left ventricular mass (LVM) of 
the heart using a set of electrocardiographic 
(ECG) and clinical variables. The prediction 
of LVM with ECG only as a point-of-care tool, 
without any resource-dependent imaging 
modality, can serve as a ready and cost-
effective alternative in resource-crunched 
set-ups and can ease financial and temporal 
burden.6 Multiple linear regression can 
also be used to ascertain the risk factors 
of disease and morbidity. In a countrywide 
database analysis of invasive meningococcal 
infection, the researchers observed a strong 
correlation between the incidence of the 
infection and the carrier population and 
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the percentage of susceptible in the sub-
population.10 Risk factors as well severity of 
both communicable and non-communicable 
disease  have been determined using 
the statistical method of multiple linear 
regression modelling in numerous research 
work. The method also helps in finding out 
the determinants of response to therapy in 
a particular health condition, provided the 
outcome (response to therapy) is a continuous 
variable. In a study, seeking to judge the 
efficacy of dulaglutide as on add-on therapy 
to insulin in uncontrolled type 2 diabetes 
mellitus, the researchers tested multiple 
parameters for a possible association with 
the magnitude of glycosylated haemoglobin 
at the end of 6 months of treatment. 
Baseline Hba1c was found to be a significant 
correlate of Hba1c reduction in a fixed effect 
multiple linear regression model.11 The list 
of examples of multiple linear regression 
in medical literature is exhaustive and its 
ramifications have ubiquitous applications 
in medical research. 

Limitations

The number of predictor variables (04) and 
the sample size (n=40) in the simulation 
was kept on the lower side to enhance 
the ease of understanding and minimise 
mathematical conundrum. In real-world 
settings, the data is invariably more 
complex. A priori calculation of sample 
size, using the optimal power, limit of 
type I error and the anticipated effect size 
should be undertaken. The selection of 
optimum number of explanatory variables 
commensurate with sample size is also 
essential to avoid overfitting or underfitting 
of the model.In addition, categorical and 
ordinal data can also be introduced as 
explanatory variables in a multiple linear 
regression model by recoding into discrete 
numerals. However, our work was confined 
to continuous predictors only. Finally, 
identification of confounding variables is 
important in any biological research to 

avoid equating correlation to causation. All 
mathematical relations must be judged in 
conjunction with the biological plausibility.

Conclusion:
Multiple linear regression modelling is a 
useful method for assessment of multiple 
clinical end-points in modern medicine and 
can be effectively employed for development 
of ready-made tools for risk assessment, 
establishing diagnosis or monitoring 
therapeutic efficacy in patient care. 
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